UPTET Exam Practice Mathematics Questions
Q1. Two cylinders have equal volumes and their height are in the ratio 1:3. The ratio of their radii will be.
दो बेलनों का आयतन बराबर है और उनकी ऊंचाई 1: 3 के अनुपात में है. उनकी त्रिज्या का अनुपात होगा?
(a) 1:3
(b) 3:1
(c) √3:3
(d) 3: √3

Q3. Area of a circle is 154 sq. cm. Its circumference will be
एक वृत्त का क्षेत्रफल 154 वर्ग सेमी है. इसकी परिधि होगी:
(a) 44cm
(b) 48cm
(c) 54 cm
(d) 68 cm
Q4. If the perimeter of an equilateral triangle is 72cm, its area will be
यदि एक समबाहु त्रिभुज की परिधि 72सेमी है, तो इसका क्षेत्रफल होगा:
(a) 144√3 sq. cm. /144√3 वर्ग सेमी
(b) 142√3 sq. cm./ 142√3 वर्ग सेमी
(c) 154√2 sq. cm./ 154√2 वर्ग सेमी
(d) 144√2 sq. cm./ 144√2 वर्ग सेमी
Q5. In What ratio are the volumes of a cylinder, a cone and a sphere, if each has same diameter and the same height?
एक बेलन, एक शंकु और एक वृत्त के आयतन का अनुपात क्या होगा, यदि प्रत्येक का व्यास और ऊंचाई समान है?
(a) 1:3:2
(b) 2:3:1
(c) 3:1:2
(d) 3:2:1
Q6. The length of the longest rod that can be placed in a room of dimensions 10m× 10m×5m is
10 मी × 10 मी × 5 मी आयाम वाले कमरे में रखी जाने वाली सबसे लंबी छड़ की लंबाई होगी:
(a) 15√3
(b) 15
(c) 10√2
(d) 5√3
Q7. What is the volume of a cube (In cubic cm) whose diagonal measures 4√3 cm?
एक घन का आयतन (घन सेमी में) क्या होगा जिसकी विकर्ण है 4√3 सेमी ?
(a) 8
(b) 16
(c) 27
(d) 64
Q8. The radius and height of a cylinder are in the ratio 5:7 and its volume is 4400cm³. Then its radius will be
एक बेलन की त्रिज्या और ऊंचाई 5: 7 के अनुपात में है और इसका आयतन 4400 सेमी³ है. तो इसकी त्रिज्या होगी:
(a) 4cm
(b) 5cm
(c) 10cm
(d) 12cm
Q9. Find the slant height of the cone whose height is 4.8cm and the diameter of base is 4cm.
शंकु की तिरछी ऊँचाई ज्ञात कीजिए जिसकी ऊँचाई 4.8सेमी और आधार का व्यास 4सेमी है.
(a) 4.2 cm
(b) 5.2cm
(c) 6.2cm
(d) 7.2cm
Q10. Volume of a hemisphere is 19404cm, Its radius is
एक गोलार्ध का आयतन 19404 सेमी है, इसकी त्रिज्या होगी:
(a) 10.5 cm
(b) 17.5 cm
(c) 21 cm
(d) 42 cm
Solutions
S1. Ans.(d)
Sol. Ratio of height of two cylinders
= h₁ : h₂
= 1 : 3
volume of cylinder = π r²h

S2. Ans.(b)
Sol. Volume of cuboid = a × b × c
V= abc
Total Surface Area of Cuboid
S= 2(lb + bh + hl)
S = 2 (ab + bc + ca)

S3. Ans.(a)
Sol. Area of Circle = π r²

S4. Ans.(a)
Sol. S = side
Perimeter of equilateral triangle = 3S

S5. Ans.(c)
Sol. Volume of Cylinder: Volume of cone: Volume of Sphere

S6. Ans.(b)
Sol. D = Diagonal (longest rod)

S7. Ans.(b)

S8. Ans.(c)
Sol. radius : height
5 : 7
Volume of Cylinder = π r²h

x³ = 8
x=2
radius = 5x
= 5× 2
= 10 cm
S9. Ans.(b)
Sol. Slant height = l

S10. Ans.(c)
